From ParGO - Paralelismo, Grafos e Otimização

Manuscritos: Implicações Lógicas

Uma outra forma de compor sentenças, forma essa amplamente utilizada na descrição de teorias matemáticas, é através do uso da *implicação lógica* (ou simplesmente *implicação*). Essa forma de combinação de sentenças pode ser descrita da seguinte maneira. Sejam P e Q duas sentenças quaisquer. Podemos formar uma terceira sentença composta do tipo "P implica Q", a qual pode ser escrita

"se P, então Q"

ou ainda

 $"P \Rightarrow O"$

Nessa implicação, chamamos P de hipótese e Q de consequência. Uma implicação somente é considerada \mathbf{F} quando o valor \mathbf{V} para a consequência decorre do valor \mathbf{V} para a hipótese. Em outras palavras, uma implicação traduz a ideia, frequentemente empregada em desenvolvimentos lógicos, da consequência de se ter quando uma determinada sentença é satisfeita. Um exemplo de implicação lógica é a Proposição 15 de \mathbf{Os} $\mathbf{Elementos}$ \mathbf{de} $\mathbf{Euclides}$, que consiste na seguinte generalização da $\mathbf{afirmação}$ mencionada anteriormente:

"Se duas linhas retas se intersectam, então os ângulos verticalmente opostos são iguais."

Ao mostrar que essa sentença é \mathbf{V} , Euclides nos mostrou que, sempre que a hipótese for \mathbf{V} ("duas linhas retas se intersectam"), a consequência será \mathbf{V} ("os ângulos verticalmente opostos são iguais"). O valor lógico de $P\Rightarrow Q$ é determinado examinando-se os seguintes casos:

Caso 1. *P* é **V**

a implicação recebe o valor lógico de Q. Neste caso, dizemos que a implicação é satisfeita quando Q é \mathbf{V} .

Caso 2. *P* é **F**

a implicação recebe **V**. Dizemos, neste caso, que a implicação é satisfeita por vacuidade.

Em outras palavras, o valor lógico de $P\Rightarrow Q$ é o mesmo de $\neg P$ v Q. Observe que o único caso em que a implicação não é satisfeita é quando a hipótese se verifica (isto é, P é \mathbf{V}) e a conseqüência não se verifica (isto é, Q é \mathbf{F}). Esse comportamento é refletido na **tabela-verdade para a implicação lógica** $P\Rightarrow Q$.

Attach: $img27.png^{\Delta}$ | Figura Tabela-verdade para a implicação lógica

Uma divertida

1 de 3 20-03-2012 10:28

$$P \Rightarrow Q$$
 charada ilustra o

significado da implicação lógica. Imagine que encontramos duas pessoas, e sabemos que cada uma delas sempre diz a verdade ou sempre mente. Porém, não conhecemos as pessoas que encontramos, portanto não sabemos se ambas sempre falam a verdade, se ambas sempre mentem, ou se uma delas sempre mente e a outra sempre diz a verdade. Ao nos encontrar, uma das pessoas diz:

"Se sempre digo a verdade, então meu colega também sempre diz a verdade."

Visto que tal sentença é uma implicação lógica, podemos tentar analisá-la para tentar descobrir se a pessoa falou a verdade ou mentiu. Suponha que a pessoa que falou sempre minta. Então, a afirmação dela deve ser **F**, o que só acontece se "sempre digo a verdade" é **V** e "meu colega sempre diz a verdade" é **F**. Ora, nós supusemos que "sempre digo a verdade" é **F** ao supor que a pessoa que falou sempre mente, e concluimos que a conseqüência é que "sempre digo a verdade" é **V**. Como não é possível que uma mesma sentença seja, ao mesmo tempo, **V** e **F**, temos que a hipótese inicial não pode ocorrer. Portanto, a pessoa falou a verdade. è deixada ao leitor a verificação que essa hipótese (a pessoa falou a verdade) não leva a uma incoerência.

Uma quarta forma de compor sentenças é através da *equivalência lógica* ou simplesmente *equivalência*. Novamente, sejam P e Q duas sentenças simples. Podemos compor uma terceira sentença do tipo: "P é equivalente a Q" ou "P se e somente se Q", ou ainda $P \Leftrightarrow Q$. O sentido exato de uma equivalência é o de uma implicação dupla, ou seja, $P \Leftrightarrow Q$ é V quando ambas as implicações $P \Rightarrow Q$ e $Q \Rightarrow P$ são V. Logo, para que $P \Leftrightarrow Q$ seja V é preciso que P e Q sejam ambas V simultaneamente, conforme mostrado na **tabela-verdade para a equivalência lógica** $P \Leftrightarrow Q$.

Attach:img30.png $^{\Delta}$ | Figura: Tabela-verdade para a equivalência lógica $P \Leftrightarrow Q$.

Alternativamente, temos que quando "P se e somente se Q" é \mathbf{V} , isso significa que:

- 1. "P, se Q", o que significa que Q ser \mathbf{V} é suficiente para que P seja \mathbf{V} ; e
- 2. "P, somente se Q", ou seja, Q ser \mathbf{V} é necessário para que P seja \mathbf{V} pois Q sendo \mathbf{F} , P também o será.

Não é difícil verificar que a formulação em ${\bf 1}$ quer dizer que Q implica P e que a formulação em ${\bf 2}$ quer dizer que P implica Q.

Fazemos a seguir um resumo do assunto exposto acima. Sejam P e Q duas sentenças quaisquer. Considere a análise das seguintes sentenças compostas abaixo:

- 1. Considere a sentença $R = P \land Q$. A sentença $R \notin \mathbf{V}$ somente se ambas $P \in Q$ forem \mathbf{V} . Logo, para estabelecer o valor \mathbf{V} de R, ambas $P \in Q$ devem ser analisadas.
- 2. Considere a sentença $R = (P \lor Q)$. Temos que $R \notin V$ somente se pelo menos uma das

2 de 3 20-03-2012 10:28

- sentenças P ou Q é \mathbf{V} . Logo, para estabelecer o valor \mathbf{F} de R, ambas P e Q devem ser analisadas.
- 3. Considere a sentença $R = (P \Rightarrow Q)$. Temos que R é \mathbf{F} somente quando P é \mathbf{V} e Q é \mathbf{F} . Logo, quando P for \mathbf{V} , para que R seja \mathbf{V} , precisamos verificar o valor de Q. R será \mathbf{V} se Q o for. Caso contrário, quando P for \mathbf{F} , R será \mathbf{V} .
- 4. Considere a sentença $R = (P \Leftrightarrow Q)$. Temos que $R \notin \mathbf{V}$ quando ambas $P \in Q$ forem \mathbf{F} ou quando ambas $P \in Q$ forem \mathbf{V} . Em todos os outros casos, R será \mathbf{F} .

Originário de http://www.lia.ufc.br/~pargo/index.php/Manuscritos/ImplicacoesLogicas Pagina modificada em 24/03/2011 15:52

3 de 3 20-03-2012 10:28